
活動目標(biāo):1、感受生活中有規(guī)律的序列,產(chǎn)生對規(guī)律活動的興趣。2、能仔細(xì)觀察、主動探索,感知規(guī)律的主要特征。3、嘗試自創(chuàng)規(guī)律,發(fā)展幼兒的實際運用能力。活動準(zhǔn)備:1、有色彩排列出規(guī)律的衣服。2、可以串掛的小積木若干,穿掛用的繩子人手一根。3、生活中有規(guī)律事物的課件(照片以幼兒身邊場景為主)。

2、發(fā)展幼兒的邏輯思維能力。3、教育孩子珍惜時間,養(yǎng)成按時作息的好習(xí)慣?;顒訙?zhǔn)備:1、幼兒人手一份硬紙片鐘。2、動物手偶3、實物鐘活動過程:一、引入并簡單認(rèn)識鐘及其作用。1、 引入并簡單認(rèn)識鐘的種類及其作用。教師調(diào)鬧鐘鬧鈴引入提問:⑴你們猜猜是什么聲音?(鬧鐘的鬧鈴)⑵家里還有哪些鐘?是什么形狀的?(有鬧鐘,手表,掛鐘和大座鐘)⑶鐘有什么作用?(鐘不停的走,告訴人們幾點了,人們就按照時鐘上的時間進行學(xué)習(xí)休息)2、簡單認(rèn)識鐘面。教師:今天老師也帶來了一個鐘,看看它是什么形狀的?(圓形)請你仔細(xì)觀察鐘面上有什么?總結(jié):有兩根針和12個數(shù)字。提問:⑴這兩根針有什么不同?(長度不同)教師:他們都有自己的名字,長的叫分針,短的叫時針。我們在看看數(shù)字,提問:⑵正上面的是數(shù)字多少?(12)⑶正下面的是數(shù)字多少?(6)二、由時針、分針賽跑,引導(dǎo)幼兒感知時針、分針的運轉(zhuǎn)規(guī)律。教師:今天呀,時針和分針要進行依次跑步比賽,現(xiàn)在他們都摘在數(shù)字12的起跑線上了。請你們猜猜誰回贏?好,比賽就要開始了,預(yù)備— 開始?。ń處煵僮麋姳恚┨釂枺孩耪l跑的快?(分針)議論:分針和時針跑的時候,他們之間有什么秘密呢?教師反復(fù)操作??偨Y(jié):分鐘走一圈,時鐘走一格,這就是一小時。

活動目標(biāo):通過實踐活動,學(xué)會用自己的方法分類統(tǒng)計生活中物品的數(shù)量,從中體驗數(shù)學(xué)的有趣及重要。活動準(zhǔn)備:教師事先選擇好實踐的場地(幼兒園內(nèi)),并親自實踐一遍做好記錄,心中有數(shù);紙、筆。活動過程:(一)復(fù)習(xí)鞏固:1、你能從1數(shù)到幾?數(shù)數(shù)看。2、更快的數(shù)數(shù)方法:5個5個地數(shù),10個10個地數(shù)。3、100以內(nèi)的隨便一個數(shù)你會寫嗎?試試看(請幾個幼兒到黑板上聽寫)。(注:此環(huán)節(jié)的目的在于教師了解幼兒在實踐活動中必備的一些相關(guān)知識掌握如何,以便在活動中更好地把握。)(二)聯(lián) 系生活:1、在生活中,你碰到什么東西要用數(shù)來數(shù)?舉例子。2、在幼兒園里也藏了許多數(shù),請小朋友們說說。3、用什么方法統(tǒng)計方便?(每5個或10個記錄一次,然后5個5個或10個10個地數(shù);列表統(tǒng)計等)

重點:了解接龍游戲的規(guī)律,并能運用比較、對應(yīng)的經(jīng)驗合作制作接龍卡。難點:1.孩子對前后卡片的界限區(qū)分。成因是接龍卡本身有兩小部分所組成,容易會造成孩子辨別卡片上的混淆。2.操作中的前后推理。成因是由于幼兒的逆向思維發(fā)展尚不成熟,容易被附近一個已知數(shù)所誤導(dǎo)。解決策略:1.逐步化解法:借助雙色的卡片做教具,以層層遞進的方式從順向推理向逆向推理逐步過渡。2.資源共享法:以小組合作形式開展操作活動,能以兵兵互教的形式化解補缺的難點,達到資源共享?;顒幽繕?biāo):1.了解接龍游戲的規(guī)律,并能運用比較、對應(yīng)的經(jīng)驗合作制作接龍卡。 2.嘗試用簡潔語言介紹和交流自己的操作結(jié)果,能運用以往的數(shù)學(xué)經(jīng)驗表明意思。

本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實際問題;5.數(shù)學(xué)運算:能夠正確運用復(fù)數(shù)三角形式計算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?

本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來學(xué)習(xí)三角函數(shù)模型的簡單應(yīng)用,進一步突出函數(shù)來源于生活應(yīng)用于生活的思想,讓學(xué)生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學(xué)關(guān)系來建立數(shù)學(xué)模型; 3.數(shù)學(xué)運算:實際問題求解; 4.數(shù)學(xué)建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.

一.教材分析(一)教材內(nèi)容地位作用與學(xué)情《分?jǐn)?shù)的簡單計算》是人教版小學(xué)數(shù)學(xué)三年級上冊P96~97第八單元中的分?jǐn)?shù)的簡單計算第一課時的內(nèi)容。主要是簡單同分母分?jǐn)?shù)的加減法的計算,分?jǐn)?shù)的簡單計算是學(xué)生數(shù)與代數(shù)運算的一次擴展,是在學(xué)生之前學(xué)習(xí)認(rèn)知了簡單分?jǐn)?shù)含義及其大小比較等知識經(jīng)驗的基礎(chǔ)上開展教學(xué)的。也是學(xué)習(xí)異分母加減法等知識的基礎(chǔ)。(二)教學(xué)目標(biāo)基于以上教材理解分析和新課程標(biāo)準(zhǔn)“四基”、“四能”要求,擬將本課教學(xué)目標(biāo)定位確立如下:知識與技能目標(biāo): 理解和掌握同分母分?jǐn)?shù)加減法的算理和計算方法,能正確計算簡單同分母分?jǐn)?shù)的加減法,解決簡單實際問題;過程與方法目標(biāo):讓學(xué)生經(jīng)歷探究同分母加減法的計算方法的過程。培養(yǎng)學(xué)生的動手操作能力、邏輯思維能力、口頭表達能力和計算能力。情感態(tài)度與價值觀目標(biāo):讓學(xué)生感受到數(shù)學(xué)來與生活的密切聯(lián)系,培養(yǎng)增強數(shù)學(xué)興趣。

(二)十進制計數(shù)法1.新課引入.我們已經(jīng)學(xué)過億以內(nèi)的數(shù)及計數(shù)單位和億以內(nèi)的數(shù)位順序.在日常生活中還經(jīng)常用到比億大的數(shù),例如我國人口約有12億,世界人口有50多億,銀行存款已超過百億等.你能從億接著往下數(shù)嗎?2.用算盤數(shù)數(shù),認(rèn)識十億、百億、千億.可以在算盤上先撥上億,邊撥珠邊數(shù):10個一億是十億,10個十億是一百億,10個一百億是一千億.分別板書:十億 百億 千億提問:你學(xué)過的個、十、百、千億,都是用來計數(shù)的,它們叫什么?(叫計數(shù)單位.)教師指出:十億、百億、千億和以前學(xué)習(xí)的個、十、百、千億一樣,都是計數(shù)單位.

四,說教學(xué)過程(一)基本功訓(xùn)練:通過2分鐘口算練習(xí)以及聽,說,動的訓(xùn)練,提高學(xué)生的口算能力及運算速度,培養(yǎng)學(xué)生的聽,說,動的學(xué)習(xí)習(xí)慣.緩解學(xué)生的緊張情緒.(二)情景激趣,導(dǎo)入新課.通過談話,同學(xué)們喜歡吃水果嗎吃水果能吃出數(shù)學(xué)問題.這是出示例1的情境圖,讓學(xué)生說一說他們吃出了什么數(shù)學(xué)問題.這樣設(shè)計的意圖是通過學(xué)生自己觀察發(fā)現(xiàn)數(shù)學(xué)信息,提出數(shù)學(xué)問題,培養(yǎng)學(xué)生解決問題的意識和能力,培養(yǎng)學(xué)生抓住有價值的數(shù)學(xué)信息的能力.(三)探究同分母分?jǐn)?shù)加法.看到黑板上的和你想到了什么(比大,分母相同,根據(jù)這個分?jǐn)?shù)你們能提個問題嗎)這是注重培養(yǎng)學(xué)生多思考,多表達,在語言表達中深化對前面學(xué)習(xí)過知識的理解.發(fā)展學(xué)生的語言表達能力.

(3)引導(dǎo)總結(jié)小數(shù)加減法計算方法。引導(dǎo)概括出:計算小數(shù)加減法時要把相同數(shù)位上的數(shù)對齊,也就是要把小數(shù)點對齊。(4)看書36頁 讀小數(shù)加減法計算方法(三)拓展練習(xí):1.用豎式計算 4.37+2.93 7.54+6.84【設(shè)計意圖】練習(xí)的目的是鞏固算法,同時暴露新的認(rèn)知沖突,計算結(jié)果末尾有“0”,正確處理“0”的問題。學(xué)生發(fā)現(xiàn)問題,提出解決辦法,教師引導(dǎo)學(xué)生根據(jù)小數(shù)的性質(zhì),正確認(rèn)識和掌握計算結(jié)果末尾有“0”的時候要化簡,即劃掉末尾的“0”的問題。2.解決實際問題課件出示【設(shè)計意圖】解決身邊的問題,體會新知識源于生活,服務(wù)于生活。在解決問題中使學(xué)生進一步理解小數(shù)加減法的意義,正確計算小數(shù)加減法,掌握新的本領(lǐng)。(四)、課堂小結(jié):分為兩部分,先看書36頁,整理所學(xué)知識;再由學(xué)生談收獲、談體會。歸納總結(jié)是否達到知識情感的預(yù)定目標(biāo)。

本節(jié)通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.

本節(jié)課在已學(xué)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實上,這種差異正是不同類型現(xiàn)實問題具有不同增長規(guī)律的反應(yīng).而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標(biāo)1.掌握常見增長函數(shù)的定義、圖象、性質(zhì),并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質(zhì)的比較,培養(yǎng)數(shù)學(xué)建模和數(shù)學(xué)運算等核心素養(yǎng).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:常見增長函數(shù)的定義、圖象、性質(zhì);2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學(xué)運算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)函數(shù)性質(zhì).重點:比較函數(shù)值得大?。浑y點:幾種增長函數(shù)模型的應(yīng)用.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。

本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認(rèn)識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認(rèn)識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認(rèn)識;b.邏輯推理:由特殊到一般的推理;

本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會到由簡單到復(fù)雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學(xué)生學(xué)會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。

本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時,本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡單應(yīng)用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認(rèn)識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒āD象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;

課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認(rèn)識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學(xué)習(xí),讓學(xué)生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標(biāo)1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用.

本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認(rèn)識函數(shù)零點的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;

客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應(yīng)關(guān)系,這種關(guān)系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應(yīng)的運動變化規(guī)律.課程目標(biāo)1、能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應(yīng)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學(xué)和其他學(xué)科中的重要性. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關(guān)系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學(xué)運算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,將自然語言用數(shù)學(xué)表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.

本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;

本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學(xué)運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。