
已知xm-n+1y與-2xn-1y3m-2n-5是同類項,求m和n的值.解析:根據(jù)同類項的概念,可列出含字母m和n的方程組,從而求出m和n.解:因為xm-n+1y與-2xn-1y3m-2n-5是同類項,所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當m=4,n=3時,xm-n+1y與-2xn-1y3m-2n-5是同類項.方法總結:解這類題,就是根據(jù)同類項的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設計用加減法解二元一次方程組的步驟:①變形,使某個未知數(shù)的系數(shù)絕對值相等;②加減消元;③解一元一次方程;④求另一個未知數(shù)的值,得方程組的解.進一步理解二元一次方程組的“消元”思想,初步體會數(shù)學研究中“化未知為已知”的化歸思想.選擇恰當?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學生的觀察、分析問題的能力.

【設計意圖:讓學生在操作、探索的基礎上,組內交流想法,再在班內交流匯報,讓學生的語言得到相互交流、碰撞,從而不斷激發(fā)學生的思維火花?!繋煟耗隳馨堰@些擺法用算式寫出來嗎?(學生獨立寫出算式并匯報)依學生匯報板書:1×12=122×6=1212×1=126×2=123×4=124×3=12師:請同學們觀察一下,哪兩道算式的因數(shù)一樣?學生觀察算式,找出因數(shù)一樣的算式。師:那么,這6個算式最少能用幾種算式表示出來?引導學生說出能用3種方法表示,這三種方法是:1×12=122×6=123×4=12,并指明算式一樣時選擇其中一種說出來。板書:12=1×12=2×6=3×4師:同學們觀察一下,12的因數(shù)有哪幾個?(學生說出12的因數(shù)有:1、12、2、6、3、4。)師:拼長方形與找因數(shù)有什么關系呢?(指名學生說一說)師:根據(jù)剛才的操作交流,請同學們說一說怎樣找一個數(shù)的因數(shù)呢?(學生思考片刻后匯報,可以組內交流。)引導學生說出:用乘法思路想,看哪兩個數(shù)相乘得12,然后一對一對找出來。

第一:說教材?!百|數(shù)和合數(shù)”是九年義務教育小學數(shù)學五年級(上)第三單元的內容,在教材第39~40頁;是學生學習了因數(shù)和倍數(shù)的意義,了解了2、5、3倍數(shù)的特征之后的重要知識,它是學生學習分解質因數(shù)、求最大公約數(shù)和最小公倍數(shù)的基礎,在本章教學中起著承前啟后的重要作用。第二:說教法:根據(jù)新課標的精神和學生實際,我將本節(jié)課教學目標定為:1)找因數(shù)填表格經(jīng)歷探索質數(shù)與合數(shù)的過程,理解質數(shù)與合數(shù)的意義;2)能正確判斷一個數(shù)是質數(shù)或合數(shù);3)在研究質數(shù)的過程中豐富對數(shù)學發(fā)展的認識,感受數(shù)學發(fā)展的文化魅力;4)、在猜想——驗證——概括——理解的過程中體會學習數(shù)學的樂趣,積累數(shù)學學習的方法。第三:說教學重難點重點:理解質數(shù)與合數(shù)的意義。難點:能正確判斷一個數(shù)是質數(shù)還是合數(shù),體會數(shù)學學習的方法。教學準備:課件教學安排:兩課時。

尊敬的領導,評委老師:大家好,今天我說課的題目是北師大版小學數(shù)學五年級上冊第一單元第五節(jié)《除得盡嗎》。我將會以說教材、說學生、說教法、說教學過程、說教學效果評測、說反思等六各方面進行我的說課。一:說教材《除得盡嗎》本節(jié)內容是本單元的第五節(jié),是在學生已經(jīng)學習了整數(shù)除整數(shù)、整數(shù)除小樹、小樹除小數(shù)、以及四舍五入保留若干位小樹的基礎之上進行設置的。本節(jié)內容的主要知識點就是讓學生認識循環(huán)小數(shù)、表示循環(huán)小數(shù)以及“四舍五入”法取其近似值,總體難度不大。二:說學生對于五年級學生而言,已經(jīng)在四年級學習了“四舍五入”法,所以在本節(jié)新授教學中已經(jīng)有了一定的基礎。對于教師的教和學生的學都有了一定的促進作用。

2.過程與方法經(jīng)歷與他人交流算法的過程,能有條理地敘述自己的思考過程,能計算100以內數(shù)的連加運算。3.情感態(tài)度和價值觀在計算過程中初步養(yǎng)成認真、細心、耐心檢查的良好學習習慣?!窘虒W重點】 會分析數(shù)量關系,并計算100以內數(shù)的加法。【教學難點】 運用100以內數(shù)的加法解決簡單的實際問題?!窘虒W方法】 合作、探究、交流【課前準備】 多媒體課件【課時安排】 1課時【教學過程】一、創(chuàng)設情境、引出問題1.出示情境圖:同學們,你們喜歡套圈游戲嗎?你們看,淘氣和笑笑也來參加好玩的套圈游戲,讓我們一起來看一看。這個游戲是怎么玩的,你看懂了嗎?從每個小動物前面的得分我們知道離淘氣和笑笑越遠的小動物套中后得分越高。而且機靈狗告訴我們規(guī)則是“每人投3次,每套中的得0分,總分高的獲勝”。判斷勝負,有時不光要看勝的場次,還要看什么?分數(shù),分高者勝。要引導學生明白得分是根據(jù)圖中套中的小動物得到的。機靈狗說的是什么意思,誰聽懂了?2.引導學生有序觀察圖意,并讓學生看圖說一說:從圖中你知道哪些數(shù)學信息?

1.能從統(tǒng)計圖中獲取信息,并求出相關數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導入某次射擊比賽,甲隊員的成績如下:(1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質量,近年空氣質量明顯好轉,根據(jù)廣州市環(huán)境保護局公布的2006~2010年這五年各年的全年空氣質量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;

先讓學生自己總結,然后互相交流,得出結論。解一元一次方程,一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉化”成x=a的形式。解題時,要靈活運用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質22、 去括號----去括號法則3、 移項----等式性質14、 合并同類項----合并同類項法則5、 系數(shù)化為1.----等式性質2【課堂練習】練習:解下列一元一次方程解方程: (2) ;思路點拔:(1)去分母所選的乘數(shù)應是所有分母的最小公倍數(shù),不應遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時,不要漏掉等號兩邊不含分母的項。(3)去掉分母后,分數(shù)線也同時去掉,分子上的多項式用括號括起來?;仡櫧庖陨戏匠痰娜^程,表示了一元一次方程解法的一般步驟,通過去分母—去括號—移項—合并同類項—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉化。

探究點三:列一元一次方程解應用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結果,不寫分析過程)解析:(1)先設該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結:解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程再求解.

一、說教材1、教學內容北師大版小學數(shù)學五年級上冊第五單元的第一課時《分數(shù)的再認識(一)》。2、教材分析本課是學生在三年級初步認識分數(shù)的基礎上,進行深入和拓展的。在三年級,學生已結合情境和直觀操作,體驗了分數(shù)產(chǎn)生的過程,認識了整體“1”,初步了解了分數(shù)的意義,能認、讀、寫一些簡單的分數(shù)。本節(jié)課是在此基礎上,進一步引導學生認識和理解分數(shù),為后面進一步學習、運用分數(shù)知識做好鋪墊。本課的課題是《分數(shù)的再認識》,這個“再認識”,我想應該有兩方面的含義,一是進一步認識、理解分數(shù)的意義,二是結合具體的情境,讓學生體會“整體”與“部分”的關系,體會“整體不同,同一個分數(shù)所對應的數(shù)量也不同”,從而體驗數(shù)學知識形成的全過程。3、教學目標根據(jù)教學內容和學生的認知能力,我將本節(jié)課的教學目標制定如下:

(四)引導觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分數(shù)的基本性質(2)培養(yǎng)學生觀察--探索--抽象--概括的能力。2.教學安排(1)提出問題:通過驗證這兩組分數(shù)確實相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學生的觀察結果是什么,教師要順應學生的思維,針對學生的觀察方法,進行引導性評價①觀察角度的獨特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導層次一:你發(fā)現(xiàn)了1/2和2/4兩個數(shù)之間的這樣的規(guī)律,在這個等式中任意兩個數(shù)都有這樣的規(guī)律嗎?引導學生對1/2和4/8、2/4和4/8每組中兩個數(shù)之間規(guī)律的觀察。引導層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導層次三:用自己的話把你觀察到的規(guī)律概括出來。

(1) 討論——選擇。教師精心安排了兩個環(huán)節(jié),一是讓學生討論、選擇一個喜歡的分數(shù)作為研究對象,二是讓學生討論、選擇不同的實驗材料,確定不同的驗證方法,然后全班匯報。教師給每組準備了一個材料籃,里面裝著計算器、鐘表、數(shù)張紙、線段圖、彩筆、直尺等。各小組經(jīng)過熱烈的討論標新立異地選擇了不同的分數(shù)作為研究對象、選擇不同的材料作為實驗器材,一個個躍躍欲試。學生可能會選擇折紙涂色、畫線段圖、用計算器計算、看直尺、看鐘面等不同的方法去證明兩個分數(shù)是否相等。設計意圖:這樣設計,既是為后面的實驗做好準備,避免學生出現(xiàn)盲目行動,同時也是為學生探究方法的多元化創(chuàng)造條件。(2)實驗——記錄:各組拿出實驗報告,開始做實驗,并記錄實驗結果。(3)匯報——交流:分組在實物投影儀上,展示實驗報告,說明驗證方法。學生可能會出現(xiàn)多種多樣的實驗報告。(投影)

由②得y=23x+23.在同一直角坐標系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結:用畫圖象的方法可以直觀地獲得問題的結果,但不是很準確.三、板書設計1.二元一次方程組的解是對應的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導學生自主學習探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應關系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應關系.進一步培養(yǎng)了學生數(shù)形結合的意識,充分提高學生數(shù)形結合的能力,使學生在自主探索中學會不同數(shù)學知識間可以互相轉化的數(shù)學思想和方法.

2. 在彈性限度內,彈簧的長度y(厘米)是所掛物體質量x(千克)的一次函數(shù).當所掛物體的質量為1千克時彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關系式,并求當所掛物體的質量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(2分鐘,教師引導學生總結)內容:一、函數(shù)與方程之間的關系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.

本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質和興趣。

1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結:幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們仍屬于二次根式。2.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;

方法總結:(1)若被開方數(shù)中含有負因數(shù),則應先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯(lián)系,加深學生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.

屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內的代數(shù)式為零,求出對應的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內進行化簡。

第一環(huán)節(jié):情境引入內容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學們,你們能否用數(shù)學知識幫助小馬解決問題呢?請每個學習小組討論(討論2分鐘,然后發(fā)言).教師注意引導學生設兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .

第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。