
方法總結(jié):讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設(shè)原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結(jié):典例關(guān)系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設(shè)計本節(jié)課從和我們的生活息息相關(guān)的利潤問題入手,讓學(xué)生在具體情境中感受到數(shù)學(xué)在生活實際中的應(yīng)用,從而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關(guān)系列一元一次方程解決與打折銷售有關(guān)的實際問題.審清題意,找出等量關(guān)系是解決問題的關(guān)鍵.另外,商品經(jīng)濟問題的題型很多,讓學(xué)生觸類旁通,達到舉一反三,靈活的運用有關(guān)的公式解決實際問題,提高學(xué)生的數(shù)學(xué)能力.

3.想一想在例1中,(1)點B與點C的縱坐標(biāo)相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標(biāo)軸上點的坐標(biāo)有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點的縱坐標(biāo)為0;縱坐標(biāo)軸上點的坐標(biāo)為0。6.各個象限內(nèi)的點的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.

方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點作一條直線或線段的平行線是我們常作的輔助線.

方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.

意圖:課后作業(yè)設(shè)計包括了三個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學(xué)生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設(shè)計,通過此題可讓學(xué)生進一步認識勾股定理的前提條件.效果:學(xué)生進一步加強對本課知識的理解和掌握.教學(xué)設(shè)計反思(一)設(shè)計理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進行主動學(xué)習(xí).教師只在學(xué)生遇到困難時,進行引導(dǎo)或組織學(xué)生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進而得到勾股定理.

目的:課后作業(yè)設(shè)計包括了兩個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學(xué)生的知識面;拓廣知識,增加學(xué)生對數(shù)學(xué)問題本質(zhì)的思考而設(shè)計,通過此題可讓學(xué)生進一步運用三元一次方程組解決問題.教學(xué)設(shè)計反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點引導(dǎo),通過引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時,要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎(chǔ)知識.在教學(xué)的過程中,要讓學(xué)生充分理解對復(fù)雜的實際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會深刻.

證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因為學(xué)生接觸較少,因此更需要加強練習(xí).注意事項:學(xué)生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。

意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強,還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認識等等.

方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來判定直角三角形,從而推出兩線的垂直關(guān)系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗生活中數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.

8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動;積極交流合作,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機會,留給學(xué)生充足的動手機會和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。

1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導(dǎo)致錯誤.K探究點二:利用科學(xué)計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.

探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應(yīng)是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過的知識來推導(dǎo)出新的定理以及運用新的定理解決相關(guān)問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.

探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設(shè)計勾股定理驗證拼圖法面積法簡單應(yīng)用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實際問題,學(xué)會勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).

解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設(shè)計軸對稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對稱作圖——軸對稱變換通過本課時的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程,掌握空間與圖形的基礎(chǔ)知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,積極交流合作,體驗數(shù)學(xué)活動的樂趣.

密鋪的歷史背景1619年——數(shù)學(xué)家奇柏(J.Kepler)第一個利用正多邊形鋪嵌平面。1891年——蘇聯(lián)物理學(xué)家弗德洛夫(E.S.Fedorov)發(fā)現(xiàn)了十七種不同的鋪砌平面的對稱圖案。 1924年——數(shù)學(xué)家波利亞(Polya)和尼格利(Nigeli)重新發(fā)現(xiàn)這個事實。最富趣味的是荷蘭藝術(shù)家埃舍爾(M.C. Escher)與密鋪。M.C. Escher于1898年生于荷蘭。他到西班牙旅行參觀時,對一種名為阿罕伯拉宮(Alhambra)的建筑有很深刻的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪上了種類繁多、美輪美奐的馬賽克圖案。Escher 用數(shù)日復(fù)制了這些圖案,并得到啟發(fā),創(chuàng)造了各種并不局限于幾何圖形的密鋪圖案,這些圖案包括魚、青蛙、狗、人、蜥蜴,甚至是他憑空想像的物體。他創(chuàng)造的藝術(shù)作品,結(jié)合了數(shù)學(xué)與藝術(shù),給人留下深刻印象,更讓人對數(shù)學(xué)產(chǎn)生另一種看法。

最富趣味的是荷蘭藝術(shù)家埃舍爾,他到西班牙旅行參觀時,對一種名為阿罕拉的建筑物有很深的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪了種類繁多、美侖美奐的馬賽克圖案。Escher用數(shù)日的時間復(fù)制了這些圖案,并得到了啟發(fā),創(chuàng)造了各種并不局限于幾何圖案的密鋪圖案,這些圖案包括人、青蛙、魚、鳥、蜥蜴,甚至是他憑空想象的物體。他創(chuàng)作的藝術(shù)作品,結(jié)合數(shù)學(xué)與藝術(shù),給人留下深刻的印象,更讓人對數(shù)學(xué)產(chǎn)生了另一種看法。欣賞埃舍爾的藝術(shù)世界:2、動手創(chuàng)作。(小小設(shè)計師)看了大藝術(shù)家的作品,你現(xiàn)在是不是也有了創(chuàng)作的沖動?下面,請你選一種或幾種完全一樣的圖形進行密鋪,可以自己設(shè)計顏色,比一比,誰的設(shè)計更美觀、更新穎。(交流,展示)四、總結(jié):談收獲體會我們今天只是研究了一些規(guī)則圖形的簡單的密鋪。生活中還有各種各樣的密鋪現(xiàn)象。同學(xué)們可以到生活中去觀察,也可以上網(wǎng)瀏覽。

1、自主檢測現(xiàn)在我們要開始攀登主峰了,道路是崎嶇的,我相信同學(xué)們能夠克服重重困難登頂成功,只要細心,你就能行。學(xué)生獨立完成習(xí)題。2、評價完善一生匯報答案,其余自我核對,矯正錯誤。(四)、歸納小結(jié) 課外延伸1、歸納小結(jié)這節(jié)課我們主要學(xué)習(xí)了什么內(nèi)容?你最大的收獲是什么?你覺得自己的表現(xiàn)怎么樣?教師適時的對學(xué)生的學(xué)習(xí)情況作以情感性和知識性評價。2、課外延伸課本第九頁思考練習(xí)。(設(shè)計意圖:讓學(xué)生總結(jié)所學(xué),在交流反思中,意識到學(xué)習(xí)方式的重要性和數(shù)學(xué)內(nèi)容的延續(xù)性,激發(fā)學(xué)生進一步探究知識的欲望。讓學(xué)生把這節(jié)課的收獲和尚存在的疑問告訴小組的同伴,針對學(xué)生疑問采用生生交流,師生交流的形式給予解決,這樣不但使問題得以解決,還培養(yǎng)了學(xué)生的團隊協(xié)助精神。)

對比分析為什么剛才咱們從不同的3個數(shù)字中選出兩個,可以擺成6個不同的兩位數(shù),而現(xiàn)在三個同學(xué)每兩個握一次手,就一共只握了3次呢?(學(xué)生討論,發(fā)表意見)(握手不存在調(diào)換位置的情況,跟順序無關(guān),而排列數(shù),位置調(diào)換就變成另一個數(shù),與順序有關(guān)。)三、實踐應(yīng)用,鞏固新知師引導(dǎo):同學(xué)們今天說得太精彩了!那我們就進數(shù)學(xué)廣角痛痛快快地玩玩吧?。ǔ鍪菊n件)問:進去嗎?(再次打開課件,欣賞)1、快樂狗活動室(練習(xí)二十三第2題)質(zhì)疑:咦,機靈貓,蘭蘭他們?nèi)ツ牧耍亢?,機靈貓貓想要運動運動,就來到了快樂狗活動室。(課件展示)機靈貓就是機靈貓,看他們打球還想到問題了:如果每兩個人打一場乒乓球比賽,他們?nèi)艘还惨蚨嗌賵霰荣惸兀空l能很快說出來?。▽W(xué)生分析,指名說說)2、小喜鵲超市(練習(xí)二十三第1題)

以引導(dǎo)學(xué)生的餓練習(xí)興趣,再讓學(xué)生根據(jù)畫面內(nèi)容提出用乘法計算的問題,之后再讓學(xué)生小組合作交流。然后匯集學(xué)生提出的問題,并和學(xué)生一起評價提出的問題。再讓學(xué)生獨立解決提出的用乘法計算的問題。并在組內(nèi)進行交流評價。讓學(xué)生積極主動地經(jīng)歷觀察發(fā)現(xiàn)問題——提出問題——解決問題的過程,感受數(shù)學(xué)在日常生活中的作用,獲得一些初步的提出用乘法計算的問題和解決問題實踐活動的經(jīng)驗。5,讓學(xué)生充分說說你有什么收獲。整堂課的設(shè)計,著重體現(xiàn)了以學(xué)生為主體,教師是學(xué)生的組織者、引導(dǎo)者、合作者。在整個教學(xué)過程中,主要讓學(xué)生樂學(xué),愛學(xué),使學(xué)生從學(xué)會變成“我要學(xué),我會學(xué),”激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)其探究能力和自主學(xué)習(xí)的意識,同時,在不斷運用數(shù)學(xué)知識解決身邊的數(shù)學(xué)問題中,逐步發(fā)展學(xué)生的應(yīng)用意識。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。