
1、結合具體情境,體會生活中變化的量,感覺變化的量之間的關系,認識變化特征。2、通過自主探究,合作交流,在活動過程中培養(yǎng)學生用多種方法解決問題的能力,進一步發(fā)展學生觀察、比較、概括等能力,滲透分類的數(shù)學思想。3、經(jīng)歷數(shù)學活動的過程,體驗用多種方法研究問題的樂趣,感覺成功的快樂,增強學好數(shù)學的信心。教材安排了多個生活情境,以表格、圖像、關系式等不同方式呈現(xiàn),目的是讓學生通過多種方式認識變化的量的特征。因此,我確定本課的教學重點是結合具體情境,感覺變化的量之間的關系,認識變化特征。六年級的學生,抽象思維得到了一定的發(fā)展,但以前從未接觸過變化的量,從之前熟悉的定向思維模式轉向多向思維模式,并認識變化特征會有一定的困難。因此,我確定本課的教學難點是用多種方式認識變化的量的變化特征。本課需要教師準備多媒體課件,為學生準備學習單。

知識與能力目標是:理解反比例的意義,能判斷兩個量是不是成反比例過程與方法目標是:通過討論、探究、觀察等活動,提高分析問題解決問題人的能力情感態(tài)度價值觀目標是:培養(yǎng)學生對學習數(shù)學的興趣,感知數(shù)學與生活的聯(lián)系。此外,根據(jù)我對教材的解讀,我將本節(jié)課的教學重點確定為:理解反比例的意義教學難點確定為:判斷兩個量是不是成反比例二、教法與學法新課標指出:學生是學習的主體,教師是學習的組織者、引導者和合作者,因此首先我采用情境教學法,通過創(chuàng)設情境,激發(fā)學生對學習數(shù)學的興趣,;再通過師生互動,探究式教學,為學生創(chuàng)設一個寬松的數(shù)學學習環(huán)境,相對教師的教法學生采用自主探索,研討發(fā)現(xiàn)的學習方法,讓學生成為學習的主人,發(fā)揮學生學習數(shù)學的積極性和主動性,最后利用練習法:通過適當?shù)木毩?,鞏固所學的知識,解決生活中簡單的實際問題

一、教材:《畫一畫》這一內容是在學生學習了《變化的量》和《正比例》這兩節(jié)內容以后安排的,學生已經(jīng)結合大量的生活情境認識了生活中存在的許多相互依賴的變量,而且體會了這些變量之間的關系,認識了正比例及其意義,能初步判斷兩個相關聯(lián)的兩是不是成正比例,感受了正比例在生活中的應用,學生對正比例的認識有了一定的基礎。教材安排這一內容,一是讓學生進一步認識正比例,以及正比例中兩個相關聯(lián)的量之間的關系;二是通過讓學生在方格紙上描出成正比例的量所對應的點并能在圖中根據(jù)一個變量的值估計它所對應的變量的值,從而認識正比例圖像的特點。主要意圖是引導學生運用已有的知識,用圖的形式去直觀表示兩個成正比例的量的變化關系,鼓勵學生發(fā)現(xiàn)當兩個變量成正比例關系時,所繪成的圖像是一條直線,在此基礎上,鼓勵學生利用圖,進行一些估計,解決一些問題,為以后進一步學習正比例函數(shù)打下一定的基礎。

2.放大空間,升華思考由于我對教材的二度開發(fā)留給了學生足夠的探索空間,課上學生探索數(shù)學的熱情被充分調動,我們欣喜地看到:有的學生嘗試著不同平面圖形的旋轉;有的學生只用一種平面圖形,卻旋轉出不同的立體圖形;有的學生的思維并沒有停留在表象上,而是在深入地思考產(chǎn)生這一現(xiàn)象的原因……交流時學生的發(fā)現(xiàn)遠遠超出了我們的想象,這份生成帶給我們的是驚喜,是贊嘆,更是“以操作促思考”的教學行為結出的碩果。3.巧用課件,形成表象本節(jié)課,我充分運用現(xiàn)代信息技術將平面圖形經(jīng)過旋轉形成立體圖形的過程生動、逼真地再現(xiàn)出來,幫助學生將抽象的空間想象化為直觀,進而形成表象,深植于學生的腦海中,促進了學生空間觀念的形成??傊谶@節(jié)課上,我堅持把“促進學生發(fā)展”作為第一要素貫穿于課堂教學的始終,讓學生在充滿著民主、探究、思考的氛圍中,積極操作、主動思考,發(fā)展了學生的空間觀念。

《包裝》是北師大版四年級下冊第三單元第四課時的內容。本課主要讓學生探索小數(shù)乘小數(shù)的豎式計算方法,是在學生掌握小數(shù)點位置的移動引起小數(shù)大小變化的規(guī)律以及積的小數(shù)位數(shù)與兩個乘數(shù)的小數(shù)位數(shù)之間關系的基礎上教學的。小數(shù)乘法的豎式計算是本單元的重點,是學生正確進行小數(shù)乘法計算的關鍵。課本首先安排了三個問題:第一個問題是結合解決實際問題的過程,會選擇適當方法估計運算結果,發(fā)展數(shù)感,并通過交流進一步理解小數(shù)乘法與整數(shù)乘法之間相互轉化的條件;第二個問題也是結合解決實際問題的過程,掌握小數(shù)乘法轉化為整數(shù)乘法進行運算的一般步驟,從而歸納總結小數(shù)乘法的豎式計算方法;第三個問題是經(jīng)歷獨立計算和交流小數(shù)乘法的過程,體驗算法的多樣化,發(fā)展運算能力。其次安排了6道練習題,目的是為了進一步發(fā)展數(shù)感,鞏固小數(shù)乘法的豎式計算方法,體會小數(shù)乘法的豎式計算在生活中的應用。

3.小結。引導學生歸納兩位數(shù)加減法的口算步驟:要把加上或減去的兩位數(shù)看成一個整十數(shù)和一個一位數(shù),先算兩位數(shù)加、減整十數(shù),再算兩位數(shù)加減一位數(shù)。三、鞏固練習課本第93頁的做一做。分別指名口算,并說說怎么想的。四、全課總結1.根據(jù)學生回答,教師歸納小結并出示課題:口算兩位數(shù)加、減兩位數(shù)。2.口算兩位數(shù)加、減兩位數(shù)應注意什么?五、布置作業(yè)教后反思《標準》提倡算法多樣化,目的是提倡學生個性化的學習。本單元仍然注意體現(xiàn)這一理念,如本課時教學口算兩位數(shù)加、減兩位數(shù)時,既呈現(xiàn)了口算方法,還出現(xiàn)了在腦中想豎式的方法;在教學筆算時,還出現(xiàn)口算的方法。其目的就是鼓勵學生展開思路,在交流、比較的基礎上不斷地完善自己的想法,學習計算方法。

四、說教法為了更好地突出本節(jié)課的重點和難點,我采用了以下教法:1、討論法。通過學生的討論讓他們自己總結歸納出通分的意義和方法。2、借助直觀的演示進行教學,幫助學生理解通分的算理,培養(yǎng)了學生的觀察、分析能力。3、運用口答、多媒體課件等形式的練習,使學生鞏固了所學的知識,使教學得到反饋。 4、循循善誘,啟發(fā)引導學生,鼓勵學生積極發(fā)言,引導學生動口、動腦、動手,逐步掌握新知。五、說學法通過本節(jié)課的學習,使學生學會聯(lián)系舊知識解決新問題,通過對操作演示的觀察、分析,自己總結歸納出通分的意義和方法,體現(xiàn)了學生的自主。六、說教學過程(一)再現(xiàn)導入通分是在求幾個數(shù)的最小公倍數(shù)和分數(shù)的基本性質的基礎上學習的,因此,在新授前我利用多媒體課件,先安排了求兩個數(shù)的最小公倍數(shù)和分數(shù)的基本性質、比較分數(shù)的大小的復習。復習第(1)題讓學生回憶了兩個數(shù)是互質關系、倍數(shù)關系和一般關系時怎樣求它們的最小公倍數(shù);復習第(2)題讓學生回顧分數(shù)的基本性質,為通分過程打好基礎。這兩題都分散了教學中的難點。

一、說教材《約分》是人教版小學數(shù)學五下第四單元的教學內容,在學習約分前,學生已經(jīng)探索了分數(shù)的基本性質,學習了求最大公因數(shù)的方法,這些知識的掌握都為約分方法的學習提供了認知基礎。教材通過例4,教學約分的一般方法。同時在學生會求兩數(shù)最大公因數(shù)的基礎上,啟發(fā)他們思考,有沒有更簡便的方法?并介紹了約分時的常用書寫形式。二、談學情這一課的學習對象是五年級的學生,他們一方面具有小學生的特點:對新鮮事物很感興趣,以形象思維為主,有強烈的表現(xiàn)欲望、好勝心,但是部分學生還不能快速找出兩個數(shù)的公因數(shù)、最大公因數(shù)以及快速判斷兩個數(shù)是否互質。 二、說教學目標基于對教材和學情的分析,我們確定了以下教學目標:1.知識目標:理解和掌握約分的意義和方法,掌握最簡分數(shù)的概念2.能力目標:熟練進行約分,培養(yǎng)靈活運用所學知識解決實際問題的能力。 3.情感目標:引導探索知識間的內在聯(lián)系,培養(yǎng)學生觀察、比較、分析的能力和良好的數(shù)學學習習慣。

教學要求1. 通過生活中的事例,學會解決“找次品”這類問題的思想方法。2. 體會解決問題策略的多樣性及運用優(yōu)化的方法解決問題的有效性。3. 感受到數(shù)學在日常生活中的廣泛應用,培養(yǎng)應用意識和解決實際問題的能力。學情分析有化是一種重要的數(shù)學思想方法,可有效地分析和解決問題。本單元主要以“找次品”這一操作活動為載體,讓學生通過觀察、猜測、推理的方法感受解決問題策略的多樣性,在此基礎上,通過歸納、推理的方法體會運用優(yōu)化策略解決問題的有效性,感受數(shù)學的魅力。這些內容對五年級的學生來說有一定的難度,所以應讓學生在具體操作和試驗中感悟、體會,由此使學生養(yǎng)成勤于思考、勇于探索的精神。教學重點學會解決“找次品”這類問題的方法。

這樣的設計是因為低年級的學生比較喜歡聽故事,充分調到他們的積極性,使之不感覺乏味。最后是回顧小結,總結收獲。首先讓學生說說本節(jié)課有哪些地方需要提醒同學們注意。。然后,教師進行恰當評價。此環(huán)節(jié)通過師生互動、生生互動,經(jīng)歷一次再學習、再鞏固的過程。這節(jié)課中,我有淺入深,讓學生體會到數(shù)學與現(xiàn)實生活的密切聯(lián)系,讓學生能夠實實在在的從課堂學習中獲取新知,建立數(shù)學模型,培養(yǎng)能力,發(fā)展思維,從而喜歡數(shù)學課,熱愛數(shù)學學科。整堂課教學設計結構嚴謹、條理清楚、層層深入。既重視了知識本身的建構,又重視了課堂結構的建構,充分體現(xiàn)了學生從“問題情境—建立數(shù)學模型—解釋、應用與拓展”的意義建構的學習過程。學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節(jié)數(shù)學課都能達到理想的教學效果。

由②得y=23x+23.在同一直角坐標系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結:用畫圖象的方法可以直觀地獲得問題的結果,但不是很準確.三、板書設計1.二元一次方程組的解是對應的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導學生自主學習探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應關系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應關系.進一步培養(yǎng)了學生數(shù)形結合的意識,充分提高學生數(shù)形結合的能力,使學生在自主探索中學會不同數(shù)學知識間可以互相轉化的數(shù)學思想和方法.

2. 在彈性限度內,彈簧的長度y(厘米)是所掛物體質量x(千克)的一次函數(shù).當所掛物體的質量為1千克時彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關系式,并求當所掛物體的質量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(2分鐘,教師引導學生總結)內容:一、函數(shù)與方程之間的關系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.

本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質和興趣。

1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們仍屬于二次根式。2.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;

第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。

1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結:幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

方法總結:(1)若被開方數(shù)中含有負因數(shù),則應先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯(lián)系,加深學生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.

屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內的代數(shù)式為零,求出對應的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內進行化簡。

小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學模型,學會逐步掌握基本的數(shù)學知識和方法,形成良好的數(shù)學思維習慣和應用意識,提高解決問題的能力,感受數(shù)學創(chuàng)造的樂趣,增進學好數(shù)學的信心,增加對數(shù)學較全面的體驗和理解.

解:設甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結:設未知數(shù)時,一般是求什么,設什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。