提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中地理必修3資源的跨區(qū)域調(diào)配—以我國的西氣東輸為例說課稿

  • 人教版新課標(biāo)高中物理必修2圓周運(yùn)動(dòng)教案2篇

    人教版新課標(biāo)高中物理必修2圓周運(yùn)動(dòng)教案2篇

    《勻速圓周運(yùn)動(dòng)》為高中物理必修2第五章第4節(jié).它是學(xué)生在充分掌握了曲線運(yùn)動(dòng)的規(guī)律和曲線運(yùn)動(dòng)問題的處理方法后,接觸到的又一個(gè)美麗的曲線運(yùn)動(dòng),本節(jié)內(nèi)容作為該章節(jié)的重要部分,主要要向?qū)W生介紹描述圓周運(yùn)動(dòng)的幾個(gè)基本概念,為后繼的學(xué)習(xí)打下一個(gè)良好的基礎(chǔ)。人教版教材有一個(gè)的特點(diǎn)就是以實(shí)驗(yàn)事實(shí)為基礎(chǔ),讓學(xué)生得出感性認(rèn)識(shí),再通過理論分析總結(jié)出規(guī)律,從而形成理性認(rèn)識(shí)。教科書在列舉了生活中了一些圓周運(yùn)動(dòng)情景后,通過觀察自行車大齒輪、小齒輪、后輪的關(guān)聯(lián)轉(zhuǎn)動(dòng),提出了描述圓周運(yùn)動(dòng)的物體運(yùn)動(dòng)快慢的問題。二、教學(xué)目標(biāo)1.知識(shí)與技能①知道什么是圓周運(yùn)動(dòng)、什么是勻速圓周運(yùn)動(dòng)。理解線速度的概念;理解角速度和周期的概念,會(huì)用它們的公式進(jìn)行計(jì)算。②理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T。③理解勻速圓周運(yùn)動(dòng)是變速運(yùn)動(dòng)。④能夠用勻速圓周運(yùn)動(dòng)的有關(guān)公式分析和解決具體情景中的問題。

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動(dòng)探究型》教案

    高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動(dòng)探究型》教案

    一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學(xué)習(xí)本框內(nèi)容對(duì)學(xué)生來講,將有助于他們正確認(rèn)識(shí)馬克思主義,運(yùn)用馬克思主義中國化的理論成果,分析解決遇到的社會(huì)問題。具有很強(qiáng)的現(xiàn)實(shí)指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識(shí),思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時(shí)期,對(duì)一些社會(huì)現(xiàn)象能主動(dòng)思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標(biāo)1.馬克思主義哲學(xué)產(chǎn)生的階級(jí)基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對(duì)馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問題。3.實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問題和解決問題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動(dòng)中的科學(xué)探索精神和革命批判精神。

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 人教版新課標(biāo)高中物理必修1用牛頓運(yùn)動(dòng)定律解決問題(二)說課稿2篇

    人教版新課標(biāo)高中物理必修1用牛頓運(yùn)動(dòng)定律解決問題(二)說課稿2篇

    教師活動(dòng):(1)組織學(xué)生回答相關(guān)結(jié)論,小組之間互相補(bǔ)充評(píng)價(jià)完善。教師進(jìn)一步概括總結(jié)。(2)對(duì)學(xué)生的結(jié)論予以肯定并表揚(yáng)優(yōu)秀的小組,對(duì)不理想的小組予以鼓勵(lì)。(3)多媒體投放板書二:超重現(xiàn)象:物體對(duì)支持物的壓力(或?qū)覓煳锏睦?大于物體所受到的重力的情況稱為超重現(xiàn)象。實(shí)質(zhì):加速度方向向上。失重現(xiàn)象:物體對(duì)支持物的壓力(或?qū)覓煳锏睦?小于物體所受到的重力的情況稱為失重現(xiàn)象。實(shí)質(zhì):加速度方向向下。(4)運(yùn)用多媒體展示電梯中的現(xiàn)象,引導(dǎo)學(xué)生在感性認(rèn)識(shí)的基礎(chǔ)上進(jìn)一步領(lǐng)會(huì)基本概念。4.實(shí)例應(yīng)用,結(jié)論拓展:教師活動(dòng):展示太空艙中宇航員的真實(shí)生活,引導(dǎo)學(xué)生應(yīng)用本節(jié)所學(xué)知識(shí)予以解答。學(xué)生活動(dòng):小組討論后形成共識(shí)。教師活動(dòng):(1)引導(dǎo)學(xué)生分小組回答相關(guān)問題,小組間互相完善補(bǔ)充,教師加以規(guī)范。(2)指定學(xué)生完成導(dǎo)學(xué)案中“思考與討論二”的兩個(gè)問題。

  • 人教版高中語文必修5《林教頭風(fēng)雪山神廟》教案

    人教版高中語文必修5《林教頭風(fēng)雪山神廟》教案

    ②林沖無辜受害,被刺配到滄州,遠(yuǎn)離了京城,高俅一伙,陸謙、富安又追到滄州,在李小二的酒店里密謀陷害林沖。林沖從李小二那里聽說了這件事之后是什么態(tài)度?表現(xiàn)出林沖的什么性格?明確:林沖聽到李小二的報(bào)信,并確知從東京來的尷尬人就是陸虞候時(shí),馬上意識(shí)到“那潑賤賊”是要“來這里害我”,他識(shí)破了仇人的陰謀,激起了復(fù)仇的怒火,氣憤地說:“休要撞著我,只叫他骨肉為泥!”說罷,便怒沖沖地“先去街上買把解腕尖刀,帶在身上,前街后巷一地里去尋”,次日,“帶了刀,又去滄州城里城外,小街夾巷,團(tuán)團(tuán)尋了一日”。這說明,當(dāng)迫害逼到眼前時(shí),林沖也具有了強(qiáng)烈的反抗意識(shí)。但是,“街上尋了三五日,不見消耗”時(shí),“林沖也自心下慢了”,對(duì)仇人有所懷疑,卻失去了應(yīng)有的警惕性,剛剛點(diǎn)燃起來的復(fù)仇怒火又慢慢熄滅了。這說明林沖的反抗并不堅(jiān)決,幻想得過且過,委曲求全。

  • 人教版高中語文必修1《大衛(wèi)·科波菲爾》教案2篇

    人教版高中語文必修1《大衛(wèi)·科波菲爾》教案2篇

    (1)主人公大衛(wèi)·科波菲爾:大衛(wèi)·科波菲爾是《大衛(wèi)·科波菲爾》中的主人公,曾經(jīng)是個(gè)孤兒。作家描寫了他從孤兒成長為一個(gè)具有人道主義精神的資產(chǎn)階級(jí)民主主義作家的過程。他善良,誠摯,聰明,勤奮好學(xué),有自強(qiáng)不息的勇氣、百折不回的毅力和積極進(jìn)取的精神,在逆境中滿懷信心,在順境中加倍努力,終于獲得了事業(yè)上的成功和家庭的幸福。在這個(gè)人物身上寄托著狄更斯的道德理想。(2)《大衛(wèi)·科波菲爾》中的女性形象:在狄更斯筆下,《大衛(wèi)·科波菲爾》塑造了一個(gè)個(gè)有血有肉的人物形象,每個(gè)任務(wù)都給人留下了深刻的印象,尤其是成功塑造了不同性格、不同品德的女性形象:貝西姨婆、艾妮斯、佩葛蒂、克拉拉、朵拉、摩德斯通小姐、米考伯太太、艾米麗……貝西姨婆與摩德斯通小姐的對(duì)比,克拉拉、朵拉與艾妮斯的對(duì)比更使她們栩栩如生,對(duì)貝西姨婆、艾妮斯、佩葛蒂的愛就更深一層,對(duì)摩德斯通小姐更是恨之入骨,對(duì)朵拉、克拉拉既同情又氣憤。

  • 人教版高中語文必修1《鴻門宴》教案

    人教版高中語文必修1《鴻門宴》教案

    劉邦:先看劉邦對(duì)項(xiàng)伯的表白(此話也是有意讓項(xiàng)伯轉(zhuǎn)述給項(xiàng)羽聽的):“秋毫不敢有所近”——說“不敢”而不說“不曾”,多么恭順!“籍吏民,封府庫,而待將軍”——“待”,多么虔誠!“日夜望將軍至”——說“望”而不說“等”,多么迫切!再看劉邦的卑詞“謝罪”:他言必稱“將軍”,說自己與項(xiàng)羽“戮力而攻秦”,是戰(zhàn)友而非敵人;將“先入關(guān)破秦”說成是不自意,以表自己的力量不如項(xiàng)羽;把“得復(fù)見將軍于此”當(dāng)作是自己莫大的榮幸以滿足項(xiàng)羽的虛榮心;最后,他還把項(xiàng)羽的憤怒歸咎于“小人”的挑撥,為項(xiàng)羽推卸責(zé)任,及時(shí)給項(xiàng)羽一個(gè)臺(tái)階下。小結(jié):項(xiàng)羽:沽名釣譽(yù)、輕敵自大、寡謀輕信、不善用人、剛愎自用、優(yōu)柔寡斷的一介武夫。劉邦:狡詐多謀、遇事果斷、臨危不懼、能屈能伸、善于用人。

  • 人教版高中語文必修2《短歌行》教案2篇

    人教版高中語文必修2《短歌行》教案2篇

    教學(xué)過程:一、導(dǎo)語毛澤東在《沁園春雪》俯視封建君王“惜秦皇漢武。。。只識(shí)彎弓射大雕。”但如果歷史上只有一個(gè)人可以與他相提并論,這個(gè)人只能是魏武帝曹操?!皾L滾長江東逝水,浪花淘盡英雄。是非成敗轉(zhuǎn)頭空,青山依舊在,幾度夕陽紅。”(《三國演義》卷首詞)在歷史的大浪淘沙中,有多少英雄能夠經(jīng)得起歷史的千淘萬漉而流芳百世呢?曹操應(yīng)該是三國時(shí)代留下了濃重一筆的人物。老師總結(jié),并啟發(fā)他們?nèi)ヂ?lián)系:我們學(xué)過他的《觀滄?!贰皷|臨碣石,以觀滄海…”還有《龜雖壽》“神龜雖壽,猷有竟時(shí)。老驥伏櫪,志在千里;烈士暮年,壯心不已?!薄肚嗝分鬄⒄撚⑿邸分性退娺^,《三國演義》電視劇播出后,大家和他也就頻頻見面了?!度龂萘x》第48回“宴長江曹操賦詩”中,赤壁之戰(zhàn)前夕,曹操和眾部將一起狂飲,他四顧空闊,心中大喜,與諸將講述自己希望收服江南的雄心壯志。

  • 人教版高中語文必修5《歸去來兮辭(并序)》教案

    人教版高中語文必修5《歸去來兮辭(并序)》教案

    【教學(xué)目標(biāo)】1.理解作者反抗黑暗,辭官歸田,不與當(dāng)時(shí)黑暗的上層社會(huì)同流合污而熱愛田園生活的積極精神,學(xué)習(xí)其高潔的理想志趣和堅(jiān)定的人生追求。2.掌握“胡、奚、曷、焉、何”五個(gè)疑問代詞,歸納“行、引、乘、策”等四個(gè)詞的一詞多義,了解“以、而、之、兮、來”等文言虛詞的用法。3.背誦全文?!窘虒W(xué)重點(diǎn)】1.了解作者辭官歸田的原因,深刻體味詩人鄙棄官場,熱愛田園的無限欣喜之情。2.背誦全文?!窘虒W(xué)難點(diǎn)】1.理解記述中滲透出的或喜或哀,或決絕或猶疑的復(fù)雜感情。2.歸納實(shí)詞、虛詞的用法,掌握省略句、倒裝句兩種句式?!窘叹邷?zhǔn)備】投影儀投影膠片【課時(shí)安排】2課時(shí)【教學(xué)過程】第一課時(shí)[教學(xué)要點(diǎn)]了解陶淵明及其作品。讀課文,利用注釋、工具書,初步把握文章,朗讀課文,找出押韻的字,由押韻歸納各層大意,幫助學(xué)生理清背誦思路,背誦全文。[教學(xué)步驟]一、導(dǎo)語《桃花源記》是我們?cè)诔踔薪佑|過的陶淵明的作品。師生一同背誦。《桃花源記》中悠閑自得的田園生活正是作者精神追求的形象反映。今天我們學(xué)習(xí)的《歸去來兮辭》正是作者決別官場,同上層社會(huì)分道揚(yáng)鑣的宣言書。

  • 人教版高中語文必修4《長亭送別》教案

    人教版高中語文必修4《長亭送別》教案

    三.分析第三部分:1.夫妻贈(zèng)詩表現(xiàn)了二人怎樣的心情?提示:崔鶯鶯告誡張生切勿忘記她;張生則發(fā)誓永無別戀。這充分展示了二人深厚的情誼。2.怎樣理解[耍孩兒]中的典故?提示:“紅淚”借王嘉《拾遺記》的典故,司馬青衫借白居易《琵琶行》的典故,表現(xiàn)主人公因離別而生的傷心之情。“伯勞飛去燕西歸”則用牛郎織女的典故表現(xiàn)兩人纏綿難舍的心情。3.[五煞]表明了主人公怎樣的心情?提示:對(duì)張生的生活的關(guān)心,千叮萬囑,真情自現(xiàn)。4.[二煞]中所用是幾個(gè)典故?這些典故的作用是什么?提示:三個(gè)典故,見課本。其作用是表明崔鶯鶯對(duì)張生的擔(dān)心。四.分析第四部分:1.[一煞]中再寫環(huán)境,其作用是否與先前所寫相同?提示:稍有不同,這里是表現(xiàn)崔鶯鶯目送張生遠(yuǎn)去時(shí)那種凄愴悲苦的眷戀之情。以所見之物,寫內(nèi)心深藏之情。2.[收尾]中寫‘殘照’其含義是什么?提示:以“殘照”表現(xiàn)內(nèi)心的悵惘失意之情。

上一頁123...363738394041424344454647下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。