
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時(shí)間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時(shí)間是3.8-2.2=1.6(分鐘),乙與甲相遇時(shí)乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問題時(shí),正確識(shí)別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書設(shè)計(jì)1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問題中得到關(guān)系式這一過程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣

方法總結(jié):判斷軸對(duì)稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對(duì)稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對(duì)稱?解析:根據(jù)軸對(duì)稱的意義,經(jīng)過翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對(duì)稱.解:(4)(5)(6).方法總結(jié):動(dòng)手操作或結(jié)合軸對(duì)稱的概念展開想象,在腦海中嘗試完成一個(gè)動(dòng)態(tài)的折疊過程,從而得到結(jié)論.三、板書設(shè)計(jì)1.軸對(duì)稱圖形的定義2.對(duì)稱軸3.兩個(gè)圖形成軸對(duì)稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動(dòng)向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識(shí),獨(dú)立獲取知識(shí)和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)

一個(gè)不透明的袋子中裝有5個(gè)黑球和3個(gè)白球,這些球的大小、質(zhì)地完全相同,隨機(jī)從袋子中摸出4個(gè)球,則下列事件是必然事件的是( )A.摸出的4個(gè)球中至少有一個(gè)是白球B.摸出的4個(gè)球中至少有一個(gè)是黑球C.摸出的4個(gè)球中至少有兩個(gè)是黑球D.摸出的4個(gè)球中至少有兩個(gè)是白球解析:∵袋子中只有3個(gè)白球,而有5個(gè)黑球,∴摸出的4個(gè)球可能都是黑球,因此選項(xiàng)A是不確定事件;摸出的4個(gè)球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個(gè)球是黑球,∴選項(xiàng)B是必然事件;摸出的4個(gè)球可能為1黑3白,∴選項(xiàng)C是不確定事件;摸出的4個(gè)球可能都是黑球或1白3黑,∴選項(xiàng)D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.

解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個(gè)角等于∠AOB,再以這個(gè)角的一邊為邊在其外部作一個(gè)角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識(shí),課堂教學(xué)內(nèi)容以學(xué)生動(dòng)手操作為主,在學(xué)生動(dòng)手操作的過程中要鼓勵(lì)學(xué)生大膽動(dòng)手,培養(yǎng)學(xué)生的動(dòng)手能力和書面語言表達(dá)能力

解:(1)設(shè)x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設(shè)x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問題中的相等關(guān)系:兩個(gè)人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個(gè)人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設(shè)計(jì)追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學(xué)過程中,通過對(duì)開放性問題的探討與交流,體驗(yàn)生活中數(shù)學(xué)的應(yīng)用與價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、團(tuán)隊(duì)精神和克服困難的勇氣.

2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個(gè)反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個(gè)別輔導(dǎo),學(xué)生完畢教師給予評(píng)估肯定。II鞏固練習(xí):限時(shí)完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對(duì)兩種變化量,并且這兩個(gè)變化的量可以寫成 (k為常數(shù),k≠0)同時(shí)要注意幾點(diǎn)::①常數(shù)k≠0;②自變量x不能為零(因?yàn)榉帜笧?時(shí),該式?jīng)]意義);③當(dāng) 可寫為 時(shí)注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個(gè)變量相對(duì)應(yīng) 的任意一對(duì)對(duì)應(yīng)值的積來求得,只要k確定了,這個(gè)函數(shù)就確定了。

2.如何找一條線段的黃金分割點(diǎn),以及會(huì)畫黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動(dòng)與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗(yàn)來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個(gè)端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個(gè)試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時(shí)間,也節(jié)約了原材料.●板書設(shè)計(jì)

(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動(dòng):教師出示例題,提出問題;學(xué)生活動(dòng):學(xué)生通過例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習(xí)題4.4

方法總結(jié):作平移圖形時(shí),找關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對(duì)應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對(duì)應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);④按原圖形順序依次連接對(duì)應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書設(shè)計(jì)1.平移的定義在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移.2.平移的性質(zhì)一個(gè)圖形和它經(jīng)過平移所得的圖形中,對(duì)應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對(duì)應(yīng)線段平行(或在一條直線上)且相等,對(duì)應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識(shí)靈活運(yùn)用到生活中.

2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對(duì)于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問題時(shí)從不同角度思考問題,就會(huì)得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.

3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

目的:課后作業(yè)設(shè)計(jì)包括了兩個(gè)層面:作業(yè)1是為了鞏固基礎(chǔ)知識(shí)而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識(shí)面;拓廣知識(shí),增加學(xué)生對(duì)數(shù)學(xué)問題本質(zhì)的思考而設(shè)計(jì),通過此題可讓學(xué)生進(jìn)一步運(yùn)用三元一次方程組解決問題.教學(xué)設(shè)計(jì)反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對(duì)數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進(jìn)一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點(diǎn)引導(dǎo),通過引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時(shí),要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實(shí)際問題的必要性,從而掌握本堂課的基礎(chǔ)知識(shí).在教學(xué)的過程中,要讓學(xué)生充分理解對(duì)復(fù)雜的實(shí)際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點(diǎn)和缺點(diǎn),有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會(huì)深刻.

意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強(qiáng)了對(duì)數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時(shí)也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對(duì)勾股定理的歷史充滿了濃厚的興趣,同時(shí)也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識(shí)這一點(diǎn),這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識(shí)要點(diǎn),數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對(duì)本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗(yàn)證勾股定理中蘊(yùn)含的數(shù)形結(jié)合思想,學(xué)生對(duì)勾股定理的歷史的感悟及對(duì)勾股定理應(yīng)用的認(rèn)識(shí)等等.

8.一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過y軸上點(diǎn)C反射后經(jīng)過點(diǎn)B(1,0)則光線從A點(diǎn)到B點(diǎn)經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點(diǎn)對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對(duì)稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識(shí)和基本技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng);積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會(huì),留給學(xué)生充足的動(dòng)手機(jī)會(huì)和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。

意圖:課后作業(yè)設(shè)計(jì)包括了三個(gè)層面:作業(yè)1是為了鞏固基礎(chǔ)知識(shí)而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識(shí)面;作業(yè)3是為了拓廣知識(shí),進(jìn)行課后探究而設(shè)計(jì),通過此題可讓學(xué)生進(jìn)一步認(rèn)識(shí)勾股定理的前提條件.效果:學(xué)生進(jìn)一步加強(qiáng)對(duì)本課知識(shí)的理解和掌握.教學(xué)設(shè)計(jì)反思(一)設(shè)計(jì)理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個(gè)過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動(dòng)學(xué)習(xí).教師只在學(xué)生遇到困難時(shí),進(jìn)行引導(dǎo)或組織學(xué)生通過討論來突破難點(diǎn).(二)突出重點(diǎn)、突破難點(diǎn)的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個(gè)探究活動(dòng)引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計(jì)算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.

第三環(huán)節(jié):課堂小結(jié)活動(dòng)內(nèi)容:1. 通過前面幾個(gè)題,你對(duì)列方程組解決實(shí)際問題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過今天的學(xué)習(xí),你能不能解決求兩個(gè)量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實(shí)際問題的主要步驟是什么?說明:通過以上四個(gè)問題,學(xué)生基本上掌握了列二元一次方程組解決實(shí)際問題的方法和步驟,可啟發(fā)學(xué)生說出自己的心得體會(huì)及疑問.活動(dòng)意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.說明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學(xué)還可互相編題考察對(duì)方;還可以設(shè)置"我為老師出難題"活動(dòng),每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。

第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實(shí)物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個(gè),才比我多馱2個(gè).”老牛氣不過地說:“哼,我從你背上拿來一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問題呢?請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù),從而得出二元一次方程.這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程 ,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程: .

答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計(jì)1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點(diǎn):能夠運(yùn)用平方差公式分解因式的多項(xiàng)式必須是二項(xiàng)式,兩項(xiàng)都能寫成平方的形式,且符號(hào)相反.運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通??紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡,二是分解因式時(shí),每個(gè)因式都要分解徹底.

解:設(shè)另一個(gè)因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個(gè)因式為2x2+x-3.方法總結(jié):因?yàn)檎降某朔ê头纸庖蚴交槟孢\(yùn)算,所以分解因式后的兩個(gè)因式的乘積一定等于原來的多項(xiàng)式.三、板書設(shè)計(jì)1.因式分解的概念把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運(yùn)算.本課是通過對(duì)比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過對(duì)比學(xué)習(xí)加深對(duì)新知識(shí)的理解.教學(xué)時(shí)采用新課探究的形式,鼓勵(lì)學(xué)生參與到課堂教學(xué)中,以興趣帶動(dòng)學(xué)習(xí),提高課堂學(xué)習(xí)效率.

5. 作業(yè): 作業(yè)我同樣選取不同題型的五個(gè)計(jì)算題,目的是想查看學(xué)生學(xué)的效果如何,是否對(duì)哪類題型還留有疑問。 6. 自我評(píng)價(jià): 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學(xué)的知識(shí)穿插在學(xué)與練當(dāng)中,充分地利用了課堂有限的時(shí)間,并且能讓學(xué)生邊學(xué)邊練,及時(shí)鞏固。 當(dāng)然這堂課也有很多不足之處,我覺得自己對(duì)于課堂上學(xué)生做練習(xí)時(shí)出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應(yīng)該吸取經(jīng)驗(yàn)教訓(xùn),再以后的教學(xué)中加以改進(jìn)。 另外對(duì)于多個(gè)有理數(shù)相乘時(shí)的符號(hào)問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習(xí)中再做些補(bǔ)充,讓學(xué)生加深理解。從中我也得到一個(gè)教訓(xùn),再以后的教學(xué)工作中,我還應(yīng)該多學(xué)習(xí)教學(xué)方法,多思考如何歸納知識(shí)點(diǎn),才能更好地幫學(xué)生形成一個(gè)系統(tǒng)的知識(shí)系統(tǒng)!
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。