
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過(guò)程中教師通過(guò)對(duì)問(wèn)題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過(guò)手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過(guò)精心設(shè)計(jì)的問(wèn)題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過(guò)渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過(guò)“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.

1.細(xì)講概念、強(qiáng)化訓(xùn)練要想讓學(xué)生正確、牢固地樹(shù)立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過(guò)程.概念是由具體到抽象、由特殊到一般,經(jīng)過(guò)分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過(guò)程也是思維過(guò)程,加強(qiáng)概念形成過(guò)程的教學(xué),對(duì)提高學(xué)生的思維水平是很有必要的.概念教學(xué)過(guò)程中要做到:講清概念,加強(qiáng)訓(xùn)練,逐步深化.“講清概念”就是通過(guò)具體實(shí)例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個(gè)正數(shù) 的平方等于 ,即 ,那么這個(gè)正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開(kāi)方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.

第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過(guò)若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類(lèi)討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個(gè)點(diǎn)的位置需要幾個(gè)數(shù)據(jù)呢? 答:一個(gè),例如,若A點(diǎn)表示-2,B點(diǎn)表示3,則由-2和3就可以在數(shù)軸上找到A點(diǎn)和B點(diǎn)的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個(gè)點(diǎn)的位置一般需要一個(gè)數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個(gè)點(diǎn)的位置呢?請(qǐng)同學(xué)們根據(jù)生活中確定位置的實(shí)例,請(qǐng)談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號(hào)”與“3排6號(hào)”中的“6”的含義有什么不同?(3)如果將“6排3號(hào)”簡(jiǎn)記作(6,3),那么“3排6號(hào)”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個(gè)座位一般需要幾個(gè)數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號(hào)數(shù)”來(lái)確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個(gè)數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?

解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱,根據(jù)點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱.∵點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

如圖,課外數(shù)學(xué)小組要測(cè)量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們?cè)贏處測(cè)得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請(qǐng)你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長(zhǎng),進(jìn)而求出EF的長(zhǎng),得出答案.解:延長(zhǎng)DE交AB延長(zhǎng)線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類(lèi)問(wèn)題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒(méi)有直角三角形時(shí),要通過(guò)作高或垂線構(gòu)造直角三角形.

然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長(zhǎng)度,通過(guò)坡度得到∠ECF=30°,通過(guò)平角減去其他角從而得到∠AEF=45°,即可求出AE的長(zhǎng)度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門(mén)員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類(lèi)問(wèn)題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)問(wèn)題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤(rùn)=每件的利潤(rùn)×銷(xiāo)售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開(kāi)口向下,對(duì)稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷(xiāo)售該商品第45天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤(rùn)的計(jì)算方法,即利潤(rùn)=每件的利潤(rùn)×銷(xiāo)售的件數(shù),是解決問(wèn)題的關(guān)鍵.

解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問(wèn)題常??紤]此定理.三、板書(shū)設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問(wèn)題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問(wèn)題的過(guò)程中往往會(huì)忽略同弧的問(wèn)題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個(gè)數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€(gè)位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時(shí),14-x=6.所以這個(gè)兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問(wèn)題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個(gè),且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書(shū)設(shè)計(jì)幾何問(wèn)題及數(shù)字問(wèn)題幾何問(wèn)題面積問(wèn)題動(dòng)點(diǎn)問(wèn)題數(shù)字問(wèn)題經(jīng)歷分析具體問(wèn)題中的數(shù)量關(guān)系,建立方程模型解決問(wèn)題的過(guò)程,認(rèn)識(shí)方程模型的重要性.通過(guò)列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問(wèn)題、解決問(wèn)題的能力.經(jīng)歷探索過(guò)程,培養(yǎng)合作學(xué)習(xí)的意識(shí).體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價(jià)值.

探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書(shū)設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.

探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒(méi)有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒(méi)有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開(kāi)平方法的選用因式分解法或直接開(kāi)平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒(méi)有實(shí)數(shù)根.沒(méi)有特殊要求時(shí),一般不用配方法.

∴此方程無(wú)解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對(duì)于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問(wèn)題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來(lái)解決.三、板書(shū)設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問(wèn)題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問(wèn)題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問(wèn)題的過(guò)程,體會(huì)一元二次方程是刻畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過(guò)學(xué)生創(chuàng)設(shè)解決問(wèn)題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.

解析:水是生命之源,節(jié)約水資源是我們每個(gè)居民都應(yīng)有的意識(shí).題中給出假如每人浪費(fèi)一點(diǎn)水,當(dāng)人數(shù)增多時(shí),將是一個(gè)非常驚人的數(shù)字,100萬(wàn)人每天浪費(fèi)的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結(jié):從實(shí)際問(wèn)題入手讓學(xué)生體會(huì)科學(xué)記數(shù)法的實(shí)際應(yīng)用.題中沒(méi)有直接給出數(shù)據(jù),應(yīng)先計(jì)算,再表示.探究點(diǎn)二:將用科學(xué)記數(shù)法表示的數(shù)轉(zhuǎn)換為原數(shù)已知下列用科學(xué)記數(shù)法表示的數(shù),寫(xiě)出原來(lái)的數(shù):(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數(shù)點(diǎn)向右移動(dòng)4位即可;(2)將6.070的小數(shù)點(diǎn)向右移動(dòng)5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結(jié):將科學(xué)記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a(bǔ)的小數(shù)點(diǎn)向右移動(dòng)n位所得到的數(shù).三、板書(shū)設(shè)計(jì)借助身邊熟悉的事物進(jìn)一步體會(huì)大數(shù),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展數(shù)感、空間感,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力.

方法總結(jié):描述一個(gè)代數(shù)式的意義,可以從字母本身出發(fā)來(lái)描述字母之間的數(shù)量關(guān)系,也可以聯(lián)系生活實(shí)際或幾何背景賦予其中字母一定的實(shí)際意義加以描述.探究點(diǎn)四:根據(jù)實(shí)際問(wèn)題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學(xué)買(mǎi)2本練習(xí)冊(cè)花了n元,那么買(mǎi)m本練習(xí)冊(cè)要花多少元?(2)正方體的棱長(zhǎng)為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買(mǎi)2本練習(xí)冊(cè)花了n元,得出買(mǎi)1本練習(xí)冊(cè)花n2元,再根據(jù)買(mǎi)了m本練習(xí)冊(cè),即可列出算式.(2)根據(jù)正方體的棱長(zhǎng)為a和表面積公式、體積公式列出式子.解:(1)∵買(mǎi)2本練習(xí)冊(cè)花了n元,∴買(mǎi)1本練習(xí)冊(cè)花n2元,∴買(mǎi)m本練習(xí)冊(cè)要花12mn元;(2)∵正方體的棱長(zhǎng)為a,∴它的表面積是6a2;它的體積是a3.方法總結(jié):此題考查了列代數(shù)式,用到的知識(shí)點(diǎn)包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關(guān)鍵.

一、情境導(dǎo)入游泳是一項(xiàng)深受青少年喜愛(ài)的體育活動(dòng),學(xué)校為了加強(qiáng)學(xué)生的安全意識(shí),組織學(xué)生觀看了紀(jì)實(shí)片《孩子,請(qǐng)不要私自下水》,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.你能根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問(wèn)題嗎?(1)這次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會(huì)下河游泳”?二、合作探究探究點(diǎn)一:頻數(shù)直方圖的制作小紅家開(kāi)了一個(gè)報(bào)亭,為了使每天進(jìn)的某種報(bào)紙適量,小紅對(duì)這種報(bào)紙40天的銷(xiāo)售情況作了調(diào)查,這40天賣(mài)出這種報(bào)紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據(jù)分組,并繪制相應(yīng)的頻數(shù)直方圖.解析:先找出這組數(shù)據(jù)的最大值和最小值,再以10為組距把數(shù)據(jù)分組,然后制作頻數(shù)直方圖.解:通過(guò)觀察這組數(shù)據(jù)的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:

新建成的紅星中學(xué),首次招收七年級(jí)新生12個(gè)班共500人,學(xué)校準(zhǔn)備修建一個(gè)自行車(chē)車(chē)棚.請(qǐng)問(wèn)需要修建多大面積的自行車(chē)車(chē)棚?請(qǐng)你設(shè)計(jì)一個(gè)調(diào)查方案解決這個(gè)問(wèn)題.解析:決定自行車(chē)車(chē)棚面積的因素有兩個(gè),即自行車(chē)的數(shù)量與每輛自行車(chē)的占地面積.因此收集數(shù)據(jù)的重點(diǎn)應(yīng)圍繞這兩個(gè)因素進(jìn)行.解:調(diào)查方案如下:(1)對(duì)全體新生的到校方式進(jìn)行問(wèn)卷調(diào)查.調(diào)查問(wèn)卷如下:你到校的方式是騎自行車(chē)嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問(wèn)卷結(jié)果分類(lèi)統(tǒng)計(jì)騎自行車(chē)的人數(shù);(3)實(shí)際測(cè)量或估計(jì)存放1輛自行車(chē)的大約占地面積;(4)根據(jù)學(xué)校的建設(shè)規(guī)劃、財(cái)力等因素確定自行車(chē)車(chē)棚的面積.方法總結(jié):確定調(diào)查方案時(shí)必須明確兩個(gè)問(wèn)題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進(jìn)行調(diào)查可以獲得這些數(shù)據(jù)?探究點(diǎn)三:從圖表中獲取信息小冰就公眾對(duì)在餐廳吸煙的態(tài)度進(jìn)行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息回答下列問(wèn)題:

將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來(lái),并用“<”號(hào)連接各數(shù).解析:利用數(shù)軸上的點(diǎn)來(lái)表示相應(yīng)的數(shù),再利用它們對(duì)應(yīng)點(diǎn)的位置來(lái)判斷各數(shù)的大小.解:如圖:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個(gè)數(shù)的大小比較,可利用“數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進(jìn)行比較.探究點(diǎn)四:點(diǎn)在數(shù)軸上的移動(dòng)問(wèn)題點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動(dòng)4個(gè)單位長(zhǎng)度到點(diǎn)B時(shí),點(diǎn)B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對(duì)解析:∵點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),①當(dāng)點(diǎn)A沿?cái)?shù)軸向左移動(dòng)4個(gè)單位長(zhǎng)度時(shí),點(diǎn)B所表示的有理數(shù)為-6;②當(dāng)點(diǎn)A沿?cái)?shù)軸向右移動(dòng)4個(gè)單位長(zhǎng)度時(shí),點(diǎn)B所表示的有理數(shù)為2.故選C.方法總結(jié):點(diǎn)A在數(shù)軸上移動(dòng)要注意分兩種情況:一個(gè)向左,一個(gè)向右,不要漏掉其中的一種情況.

解析:本題是要求兩個(gè)未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來(lái),利用平均數(shù)的定義來(lái)列方程,組成方程組求解.解:設(shè)投進(jìn)3個(gè)球的有x人,投進(jìn)4個(gè)球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個(gè)球的有9人,投進(jìn)4個(gè)球的有3人.方法總結(jié):利用平均數(shù)的公式解題時(shí),要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯(cuò).三、板書(shū)設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過(guò)探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過(guò)有關(guān)平均數(shù)問(wèn)題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過(guò)解決實(shí)際問(wèn)題,體會(huì)數(shù)學(xué)與社會(huì)生活的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)學(xué)生對(duì)數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。